CNN(Convolution Neural Network) Layer 이야기
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.utils import np_utils
from keras.utils.vis_utils import model_to_dot
from IPython.display import SVG
%matplotlib inline
# 모델 구성하기
model = Sequential()
model.add(Conv2D(2, (3, 3), padding = "same", activation = "relu", input_shape = (8, 8, 1)))
model.add(MaxPooling2D(pool_size = (2, 2)))
model.add(Conv2D(3, (2, 2), padding = "same", activation = "relu"))
model.add(MaxPooling2D(pool_size = (2, 2)))
model.add(Flatten())
model.add(Dense(8, activation = "relu"))
model.add(Dense(3, activation = "softmax"))
# 모델 출력하기
SVG(model_to_dot(model, show_shapes = True).create(prog = "dot", format = "svg"))
[출처] 블록과 함께하는 파이썬 딥러닝 케라스, 김태영 지음, DigitalBooks, p112~124