ABOUT ME

-

Today
-
Yesterday
-
Total
-
  • caret::confusionMatrix()
    R 2018. 5. 6. 23:45

    confusionMatrix

    14th

    Percentile

    Create A Confusion Matrix

    Calculates a cross-tabulation of observed and predicted classes with associated statistics.

    Keywords
    utilities
    Usage
    confusionMatrix(data, ...)

    # S3 method for default confusionMatrix(data, reference, positive = NULL, dnn = c("Prediction", "Reference"), prevalence = NULL, mode = "sens_spec", ...)

    # S3 method for table confusionMatrix(data, positive = NULL, prevalence = NULL, mode = "sens_spec", ...)

    Arguments
    data

    a factor of predicted classes (for the default method) or an object of class table.

    options to be passed to table. NOTE: do not include dnn here

    reference

    a factor of classes to be used as the true results

    positive

    an optional character string for the factor level that corresponds to a "positive" result (if that makes sense for your data). If there are only two factor levels, the first level will be used as the "positive" result. When mode = "prec_recall"positive is the same value used for relevant for functions precisionrecall, and F_meas.table.

    dnn

    a character vector of dimnames for the table

    prevalence

    a numeric value or matrix for the rate of the "positive" class of the data. When data has two levels, prevalence should be a single numeric value. Otherwise, it should be a vector of numeric values with elements for each class. The vector should have names corresponding to the classes.

    mode

    a single character string either "sens_spec", "prec_recall", or "everything"

    Details

    The functions requires that the factors have exactly the same levels.

    For two class problems, the sensitivity, specificity, positive predictive value and negative predictive value is calculated using the positive argument. Also, the prevalence of the "event" is computed from the data (unless passed in as an argument), the detection rate (the rate of true events also predicted to be events) and the detection prevalence (the prevalence of predicted events).

    Suppose a 2x2 table with notation

    Reference
    PredictedEventNo Event
    EventAB
    No EventCD

    The formulas used here are:Sensitivity=A/(A+C)Specificity=D/(B+D)Prevalence=(A+C)/(A+B+C+D)PPV=(sensitivityprevalence)/((sensitivityprevalence)+((1specificity)(1prevalence)))NPV=(specificity(1prevalence))/(((1sensitivity)prevalence)+((specificity)(1prevalence)))DetectionRate=A/(A+B+C+D)DetectionPrevalence=(A+B)/(A+B+C+D)BalancedAccuracy=(sensitivity+specificity)/2

    Precision=A/(A+B)Recall=A/(A+C)F1=(1+beta2)precisionrecall/((beta2precision)+recall)

    where beta = 1 for this function.

    See the references for discussions of the first five formulas.

    For more than two classes, these results are calculated comparing each factor level to the remaining levels (i.e. a "one versus all" approach).

    The overall accuracy and unweighted Kappa statistic are calculated. A p-value from McNemar's test is also computed using mcnemar.test (which can produce NA values with sparse tables).

    The overall accuracy rate is computed along with a 95 percent confidence interval for this rate (using binom.test) and a one-sided test to see if the accuracy is better than the "no information rate," which is taken to be the largest class percentage in the data.

    Value

    a list with elements

    table

    the results of table on data and reference

    positive

    the positive result level

    overall

    a numeric vector with overall accuracy and Kappa statistic values

    byClass

    the sensitivity, specificity, positive predictive value, negative predictive value, precision, recall, F1, prevalence, detection rate, detection prevalence and balanced accuracy for each class. For two class systems, this is calculated once using the positive argument

    Note

    If the reference and data factors have the same levels, but in the incorrect order, the function will reorder them to the order of the data and issue a warning.

    References

    Kuhn, M. (2008), ``Building predictive models in R using the caret package, '' Journal of Statistical Software, (http://www.jstatsoft.org/article/view/v028i05/v28i05.pdf).

    Altman, D.G., Bland, J.M. (1994) ``Diagnostic tests 1: sensitivity and specificity,'' British Medical Journal, vol 308, 1552.

    Altman, D.G., Bland, J.M. (1994) ``Diagnostic tests 2: predictive values,'' British Medical Journal, vol 309, 102.

    Velez, D.R., et. al. (2008) ``A balanced accuracy function for epistasis modeling in imbalanced datasets using multifactor dimensionality reduction.,'' Genetic Epidemiology, vol 4, 306.

    See Also

    as.table.confusionMatrixas.matrix.confusionMatrixsensitivityspecificityposPredValuenegPredValueprint.confusionMatrixbinom.test

    Examples
    # NOT RUN {
    ###################
    ## 2 class example
    
    lvs <- c("normal", "abnormal")
    truth <- factor(rep(lvs, times = c(86, 258)),
                    levels = rev(lvs))
    pred <- factor(
                   c(
                     rep(lvs, times = c(54, 32)),
                     rep(lvs, times = c(27, 231))),
                   levels = rev(lvs))
    
    xtab <- table(pred, truth)
    
    confusionMatrix(xtab)
    confusionMatrix(pred, truth)
    confusionMatrix(xtab, prevalence = 0.25)
    
    ###################
    ## 3 class example
    
    confusionMatrix(iris$Species, sample(iris$Species))
    
    newPrior <- c(.05, .8, .15)
    names(newPrior) <- levels(iris$Species)
    
    confusionMatrix(iris$Species, sample(iris$Species))
    
    
    # }
    
    Documentation reproduced from package caret, version 6.0-79, License: GPL (>= 2)



    [출처] 

    'R' 카테고리의 다른 글

    stargazer패키지의 stargazer()  (0) 2018.06.29
    Missing Value가 포함된 데이터의 정렬  (0) 2018.05.29
    데이터의 유형이 character인 열을 모두 factor로 변경하기  (0) 2018.03.13
    colors  (0) 2018.03.13
    xkcd 웹툰 다운로드 받기  (0) 2018.01.22
Designed by Tistory.